DFI-EFFC International Conference on Deep Foundations and Ground Improvement:

Urbanization and Infrastructure Development - Future Challenges

June 05, 2018 - June 08, 2018
Sapienza University
Rome, Italy

Conference Proceedings
Lectures

John Mitchell Lecture: Geophysics for Geotechnical Design
Michele Jamiolkowski Emeritus Professor and Andrea Masella, Project Manager1

Keynote Lecture: Specification, Procurement, Quality Control and Certification of Bottom-Feed Stone Columns
Giovanni Vaciago ...18

Contracts and Geotechnical Investigation

Bearing Behaviour of Dubai Standstone and Dubai Siltstone Due to High-Rise Structures
Rolf Katzenbach, Prof., Steffen Leppla, Ingenieursozietät Professor Dr.-Ing and Marwan Alzaylaie...30

Civil Engineering Feasibility Study for CERN's Future Circular Collider
John Andrew Osborne Senior Civil Engineer at CERN and Joanna Louise Stanyard, Civil Engineering Consultant..40

Correlation between Axial Capacity of Driven Pile and Standard Penetration Test Blowcount
Jinyuan Liu Associate Professor and Markus Jesswein, Civil Engineering...48

Delivering Added Value via Advanced Ground Investigations for Deep Shaft Design in Urban Areas
Anthony S. O’Brien, Global Practice Leader-Geotechnics and Hock L. Liew...58

Evaluation of Seepage Barrier Wall Performance Using Instrumentation
Georgette Hlepas, PhD, PE and Vanessa Bateman, PG..71

Geotechnical Baseline to Manage Contractual Risk Caused by Unforeseen Ground Conditions
Andrea Antiga ..81

Impact from the Construction of a Working Platform and Girder Lifting Operation on Bridge Pile Foundation in Soft Soil
Bosco Poon, Principal Geotechnical Engineer and Kim Chan, Senior Principal and Service Line Leader..90

Sampling of Stabilized Clay by Use of Kiso-Jiban GP-Tr Sampler
Bjorn Kristian Fiskvik Bache and Alf Kristian Lund..100

Working Platforms for Tracked Plant - Experience from 13 Years of Best Practice
Derek Egan, Managing Director ..106
Deep Foundations Behavior and Testing

A Study of the Augmenting Effect of Equipping Piles with an Expander Body
Bengt H. Fellenius, Dr.Tech., P.Eng., K. Rainer Massarsch, Dr. Tech., Mario Terceros H., Eng. and Mario Terceros A

Controlling Ground Movements Due to Pile Installation Adjacent to London Underground Tunnels for the Southbank Place Project
Stuart Hardy, Associate Director, Thomas Beales Ferguson, Geotechnical Engineer, Duncan Nicholson, Fellow, Jonathan Ly, Senior Design Manager and Laurent Olivier, Project Manager

Design, Construction and Performance of Single Bore Multiple Anchored Diaphragm Wall in Izmir, Turkey
R. Düzceer, General Manager, D. Mothersille, Managing Director, A. Gökalp, Deputy General Manager and S. Adatepe, Technical Manager

Drilled Pier Load Tests on Dulles Metrorail Project - Overview, Results and Discussions
Sujan K. Bhattacharya, Senior Geotechnical Engineer, Lloyd W. Young, Senior Principal Geotechnical Engineer and Jeongbo Seo, Project Tunnel Engineer

Experimental Comparison on Different Pile Load Testing Methods
Gianpiero Russo and Gabriella Marone

Experimental Investigations on the Lateral Bearing Behaviour of Vibratory-Driven Open Steel Pipe Piles
Johannes Labenski, M.Sc. and Christian Moormann, Univ.-Prof. Dr.-Ing. Habil

Experimental Studies on the Lateral Load Carrying Capacity of Pier Foundations for Bridges
Sukhmander Singh, Professor of Civil Engineering

Group Effects for Pile Rows under Passive Lateral Loading
Johannes Aschrafi, Shreyas Giridharan and Christian Moormann, Univ. Prof. Dr.-Ing

Investigating the Development of Pile Capacity over Time
Jeffrey R. Barrow, President / Geotechnical Engineer, Tumal J. Karunaratne, Project Engineer and Katie E. Persons, Project Engineer

Laboratory Evaluation of a Proposed Nondestructive Testing System for Detecting Anomalies below Drilled Shaft Excavations
Alireza Kordjazi, Joseph T. Coe, Assistant Professor and Trumer Wagner

Numerical and Experimental Study of Axially Loaded Non-Displacement Piles in Sand
Fei Han, Rodrigo Salgado and Monica Prezzi
Performance of Foundations in the Kanto Plain North of Tokyo during the MW=9.0 Tohoku Earthquake of March 2011
Daniel Pradel, PE GE DGE, Joseph Wartman, Prof. and Binod Tiwari, Prof...230

Quick, Efficient & Safe Preloading of High Capacity Hydraulic Modular Props
Peter Richardson, B.Eng.(Hons.), C.Eng., FICE, Vp PLC...240

Recent Experience with Tremie Concrete Properties and Testing
Aidan Thorp, Christopher Wilkes, Duncan Nicholson and Bryan Marsh.................................244

Static Load Tests by Bi-Directional Method in the Brazilian Context
Felipe V. A. de Souza Cruz, Civil/Geotechnical Engineer, Marco A. G. Conte, Civil/Geotechnical Engineer, Renan Basso, Civil Engineer and Alessandra C. de Freitas, Professor of Civil/Geotechnical Engine..........................254

Study of Effects of Construction Methods on Performance of Drilled Shafts
Sohail Kibria Vice President and Sajid Iqbal Senior Geotechnical Engineer.................................262

Study on the Bearing Capacity of Bored Piles with Improvement Techniques
Ana B. A. N. Dias, Leonardo B. D. Brandão and Juliane A. F. Marques...270

Study on the Resistance of Bored Piles with Rings
Leonardo B. D. Brandão, Ana B. A. N. Dias and Juliane A. F. Marques...280

The Application of Fibre Optic Sensor Technology in the Integrity Testing of Deep Foundations
Anthony N. Fisher Testing and Instrumentation Manager and Andrew G. Bell Chief Engineer.............289

The Case of a Building Design Review Requiring a Full Foundation Redesign
Brendan Atarigiya, Geotechnical Engineer, Philip Amankwah, Structural Engineer, Isaac Osei, Structural Engineer, Nii K. Allotey, Geo-Structural Earthquake Engineer, Josesph Oddei, Geotechnical Engineer and William Albert-Viala, Structural Engineer...299

The Influence of a Thin Weak Soil Layer on the Pile Bearing Capacity
Shilton Rica, PhD student and Stefan Van Baars, Professor...308

Diaphragm Walls

Application of Long-Chain Polymer Slurry as Soil Stabilization in Reverse Circulation Drilling System
Goncalo António de Araújo Costa and Sri Ram Ramankutty I.R...318

Challenges Faced in the Construction of 60M Deep Diaphragm Walls, with Hydraulic Grabs in Central London, England
Paul Wiltcher, Operations Director and Peter Handley...324
Doha Metro's Flagship Triple Line Interchange Station
Christina Mavrommati, Principal Geotechnical Engineer, Cremona Makaginsar, Chartered Engineer and Carlos Posso, Senior Project Manager

EFFC/DFI Guide to Tremie Concrete for Deep Foundations
Karsten Beckhaus Ph.D. and Chris Harnan

Good Reasons to Swap from Trench Cutter to Hydraulic Grab; Liebherr and Saos, Actual Cases from Florence, Rome and Milan
S. Bechter, G. Franco, F. Rossi and M. Bringiotti

Positive Cut-Off Wall in Indian Dam - A New Technique for Difficult Geology
Steni Stefani, Consulting Engineer and Sanjay Dave, Civil Engineer Vice President & Sector Head

Recommended Junctons between Diaphragm Wall Panels for Deep Excavations
Paul Vidil, Deputy Design Manager

Suez Canal Underpass: 260,000 M² of Deep Diaphragm Wall Excavation Experienced with LWN at Almost 360°
M. Bringiotti, G. Bringiotti, D. Nicastro and G. Fumagalli

The Gaasperdammertunnel - Geotechnical Challenges in Amsterdam
D. Grotegoed, Geotechnical Engineer and N. Goedhart, Deep Foundation Specialist

TTMJ - The New System for Slurry (Diaphragm) Wall Joints
Julian Crawley, John Coupland, Maurizio Siepi and Paul van Horn

Unveiling the Vision of Soil Stabilization Fluids: The Future
Eonio Trindade, Technical Team Leader (Eng.)

X10 Concept to Improve Quality and Durability of Diaphragm Walls
M. M. R. Boutz, B. J. Admiraal, R. van Berkel and P. R. B. van der Werff

New Developments and Innovative Techniques

Advances in Resonant Pile Driving and Applications
Matthew Janes, M.E.Sc., P.Eng.

Annular Monoblock Bridge Foundations
Francesco Alessandrini, Nicola De Biaggio, Dario Fedrigo, Civil Engineer and Diego Valusso

Conventional Excavation of Connecting Tunnels in C13 Metro Station (Poland - Warsaw - Line 2)
Marco Aurelio Piangatelli, Massimiliano Bringiotti and Ferdinando De Angelis
Innovative Pile Extraction Technique of CFA Piles for the New Harbor Bridge Project

Tracy Brettmann, P.E., D.GE, Vice President

Job Site Reports Related to Deep FDP, Big Diameter CSP and Ring Vibrator Executed at the Limits by the Same LWN Drill Rig

M. Bringiotti and S. Bechter

Slope Stabilization with Multiple Anchors Monitored by Glass Fibre Technique

Dominik Gächter, Dipl. Ing., Reinhard Kulmer and Vaclav Racanský

Suggestion for Controlling the Implementation of Root Piles Partially Embedded in Bedrock

Marilia D. Silva, Civil Engineering, Roberto Q. Coutinho, University Professor and Myckelle M. S. Ferreira, Civil Engineering

The Field Investigation of Tension Cracks on a Cement Grouted Slender Column during the Thermal Response Test

Yue Ouyang, Project Manager, Loizos Pelecanos, Lecturer, Kenichi Soga, Chancellor's Professor and Duncan Nicholson, Director

Ventilation Shafts and Drifts for the Metro Line 6 Project in Naples, Italy

Vittorio Manassero, Giorgio Mormone and Federico Moccia

Why Using an Air-Entrainer to Increase Workability Is Not a Great Idea for Deep Foundations

Dimitri Feys

Pile Construction

A Major Infrastructure Project and the Formation of the UK's Largest Rotary Pile under Polymer Support Fluid

Yue Ouyang, Project Manager, Stephan Jefferis, Director, Paul Wiltcher, Operations Director and Tony Suckling, Director

Brunnholen Bridge: Norway - Design and Supervision of Foundation Works

Arne Schram Simonsen and Vetle Kolberg Stene

Cast-in-Place Piles Using Toe-Grouting Cell: Application in Bolivian Rivers

Tomás Murillo Pérez, Geotechnical engineer

Current Practice of CFA Piling in Australia and New Zealand

Martin D. Larisch, PhD

Design and Construction of a 130,000 SQM Logistic Platform in Trieste's Port, ICOP & LWN: An Organization, Logistic and Powerful Rigs Winning Combination

M. Bringiotti, L. Grillo, S. Vitalini and R. Grisolia
Extraction of Precast Piles and Secant Piles up to 27m
Thomas George Design Manager and Chris Price...591

Micropiling in Urban Infrastructure: Advantages, Experience and Challenges
Freddy Lopez, MSc.-Ing. and Giorgio Severi, Dott. Ing...601

New York City Landmark Structures - Reconstructing from the Inside Out
Michael J. Chow, PE, Senior Consultant...611

Performance of Pile Foundations with Internal Diaphragm in the Red Sea Formations
Salwa Yassin, MICE, CENG, Ph.D,..621

Recent Innovations to Facilitate the Construction of Large Diameter Piles in London
Yue Ouyang Project Manager and Paul Wiltcher Operations Director..630

Steel Sheet Piling in Liquefiable Soils in Maasvlakte, Rotterdam
Bruno Pasqualini, Maria Carmela Romano and Mauro Tommasini..640

Threaded Rotary Bored Piles at Paddington New Yard
David A. Hard and Ana T. Carvalho...655

Deep Foundations Executed with Excavation

A Call for Code Revisions for High Capacity Micropiles in Rock
Anthony C. Barila, P. E., Lawrence F. Johnsen, P. E. and John McKinnon, Project Manager.........663

An Approach for Optimization of Drilled Shaft Design in Dubai
Emad Y. Sharif, B. Sc - M. Sc GTC Lab Director and Hardev Sidhu, Lab Manager......................678

Behavior of Large Diameter Bored Piles in Calcareous Cemented Sand in Kuwait
Mohamed M. Al-Deab and Nabil F. Ismael..692

Cost-Benefit Analysis of Foundations with Revit-Assisted: Case Study
Mateus N. Farina, Student and Alexandre D. Gusmão, Professor..702

Diaphragm Walls and Ground Improvement on the Open-Cut Excavation of Bologna HS Railway Station
Luca Utzeri, Stefano Ciufegni and Francesco Sacchi..716

Myckelle M. S. Ferreira, Engineer and Roberto Q. Coutinho, Teacher..730
Deep Foundations Executed without Excavation

A New Method of Quality Control for Jet Grouting Online Vibration Monitoring
Nikolaus Schneider, General Manager / Dipl.-Ing. and Silke Appel………………………………………781

A Non Linear and Plastic-Hardening Modelling of Vertically Loaded Piles
Maurizio Lenzi, Professional Engineer and Paola Campana, Professional Engineer…………………791

About the Influence of Time on the Bearing Characteristics of Precast Driven Piles
L. Vavrina, Project Manager, U. Plohmann, C. Moormann, Univ.-Prof. Dr.-Ing. habil. Christian Mo and P. Wardinghus…………………………………………………………………………………………………801

Design and Load Testing Program of Large Diameter Open-Ended Piles for a Bridge Construction Project in Louisiana
Murad Y. Abu-Farsakh, Ph.D., P.E., Md. Nafiul Haque, Ph.D. and Chris Nickel, P.E…………………………811

Evaluation of Effectiveness of Slope Stabilization Using Monitoring Techniques: An Application in Northern Italy
Alessandro Micheli, Maurizio Martino, Enrico Mittiga and Giorgio Ricci……………………………………823

Laterally Loaded Piles in an Embankment of Dry Sand
J. W. R. Brouwer, Principal Consultant………………………………………………………………………………..830

Modeling the Effect of Excess Pore-Water Pressure on the Bearing Capacity of Full Displacement Piles in Group: A Case-Study in Parma (Italy)
F. Simone, Engineer, G. Guadagnini, G. Marchi, C. Cremonini and M. Marchi…………………………………839

The Importance of Energy Evaluation on an Individual Pile Basis
Julian P. Seidel, Technical Director……………………………………………………………………………………………849
The Mechanism of Grouting Action under the Base of Bored Pile
Adam Krasinski, Dr Hab. Eng. and Mateusz Wiszniewski, MSc. Eng. ..858

The Normalized Bearing Graph and Dynamic Reduction Function Concepts in Pile Acceptance
Julian P. Seidel, Technical Director ..868

Design and Modeling Criteria: Other Techniques

Keynote Lecture: The Sochi Case: The First Real Comparison Between NATM and A.DE.CO-RS**
G. Lunardi, CEO, G. Cassini, Technical Director, A. Belloccio, Technical Manager.................................1372

Anchor Head Models: Classification, Adaptability & Design
M. Ansriou, Studies Engineer, T. Wulleman, C. Rabeux and A. Ouaar..878

Damaging of the St. Benedetto Tunnel after the Quake of October 30, 2017: Study and Repair
Alessandro Micheli, Luca Cedrone, Geotechnical Engineer and Maurizio Martino..........................888

Finite Element Numerical Analysis to Evaluate the Lateral Behavior of Three Pile Group Configurations
Murad Abu Farsakh, Research Professor, Ahmad Souri, Research Associate and George Voyiadjis, Boyd Professor..901

Influence of the Loading Duration on Undrained Shear Resistance of Soft Clays Observed during the Construction of a Roadway
Giana Laport Alves de Souza, M.Sc., Marcus Peigas Pacheco, PhD and Rubenei Novais Souza, PhD……913

Method for Assessing Damage Induced in Utilities Due to Ground Movements from Major Infrastructure Projects
Francesc Mirada, Geotechnical Engineer, Riccardo Impiumi, Geotechnical Engineer and Zeena Farook, Geotechnical Engineer...925

Pile Groups with Negative Skin Friction
Francesco Basile, PhD, MEng..934

Seismic Performance of a Piled Raft Foundation with Grid-Form DMWS Considering Softening of Stabilized Soil
Yoshimasa Shigeno, Kiyoshi Yamashita and Junji Hamada...948

Soil Improvement by Expanding Polyurethane Resins
Andrea Dominijanni, Assistant Professor, Nicolò Guarena, PhD Candidate and Mario Manassero, Professor.................................958
Grouting

Keynote Lecture: Challenges in the Design of Jet Grouted Structures
Alessandro Flora, Ph.D., Giuseppe Modoni, Stefania Lirer and Valeria Nappa ... 968

A Ground Improvement Treatment for Two Raise Bored Elevator Shafts in a Historical Site of Central Italy
Massimo Grisolia, Ignazio P. Marzano, Giuseppe Iorio, P.E., Giuseppe Panetta, P.E., Ferruccio Cribari and Giuseppe Trovato ... 989

Cement and Superabsorbent Polymer to Solidify Slurry
Jinyuan Liu, Associate Professor and Ali Ahmad, Civil Engineering ... 999

Foundation Shaft Executed with Jet Grouting
G. Modoni, M. Ochmański, E. Salvatore, Ahn Dan, L. Q. A. D. and P. Croce ... 1007

Compaction Grouting Intervention for the Mitigation of Soil Liquefaction Risk within the Earthquake-Stricken Area of Emilia in 2012
Claudio Asioli, Eng., Federico Fanti, Eng. and Paolo Zuffì, Geol ... 1019

Deep Jet Grouting for the Construction of MRT Blue Line Extension in Bangkok
Bruno Vingiani, Technical Manager and Maurizio Siepi ... 1028

Intervention for Improving Characteristics in Fault Zone in Tunnel Alignment - Consolidation Using Chemical Grouting with Mono and Bi-Component Resins
Pasquale Petrocelli, Aldo Bellone, Francesca Rossano and Marco Aurelio Piangatelli 1039

Lattice-Shaped Jet Grouting Configuration to Prevent Soil Induced Liquefaction at Christchurch Town Hall – New Zealand
Antonio Cristovao, David Brito and Abilio Nogueira ... 1050

Study on the Quality of Multifan Shaped Jet Grouting
Takashi Shinsaka, Dr.Eng., P.E.jp, Sen.Pro.C.E, Junichi Yamazaki, P.E.jp, Yasuharu Nakanishi and Kazuhito Komiya, Prof ... 1061

The Multi-Purpose Bottom Plug (MPBP): An Innovative Solution for the Galataport Project in Istanbul, Turkey
Salvatore Miranda, Claudio Asioli and Claudio Nastasi ... 1071

Ground Modification Technologies: Other Techniques

Assessing the Effectiveness of RIC/RDC Technique for Deep Fill Compaction Application
Aymen Brik, Technical Manager and Emmanouil Spyropoulos, Geotechnical Engineer 1082
Case Studies of Ground Improvement Using Rammed Aggregate Piers in Problematic Soils Allowing for Conventional Foundation

Roberto Avendano, B.Eng. P.Eng. and Matt J. Kokan, M.A.Sc. P.Eng ... 1092

Dynamic Compaction of Rockfill on Land and under Water at Stockholm Norvik Port

Sölve Hov, Håkan Eriksson and Carl Wersäll .. 1100

Effect of Steel Fibres on the Behaviour of a Chemically Stabilised Soil

A. A. S. Correia, Oliveira P. J. Venda, PhD and J. M. N. P. C. Teles, MSc 1110

Ground Improvement by Inclusions in Unstable Slopes

Ground Improvement Instead of Piling - Effective Design Solutions for Heavily Loaded Structures

Michal Topolnicki, Prof. PhD. DSc .. 1128

Innovations in Ground Improvement: Creating Composite Ground with Drill Displacement Column™ and Auger Cast Column™

Long Term Mechanical Property of Cement Treated Loam Used in Road Embankment

Yukika Miyashita and Genki Inoue .. 1151

Mega Soil Improvement Case Study: Improvement of Soft Soil Using Prefabricated Vertical Drains

Robert Thurner, Technical Director ME and Mohamed Ayeldeen, Senior Engineer 1160

Performance of a New Driven Battered Micropiles System in Sand

Amirhassan Mehdizadeh, Mahdi M. Disfani, Dr., Chin F. Tsang, Guillermo A. Narsilio, Robert Evans and Emad Gad .. 1169

Properties of Ground Improvement Using Low CO2 Emission Cement

Takao Kono and Masamichi Aoki, Executive Manager .. 1179

Secant Piles Shafts and Directional Drilling (SPPD) for a Modular Drainage System

Marco Angelici .. 1189

Underground Car Park in the Ancient "Morelli" Cavern in Naples

M. Bringiotti, A. Bellone and F. Rossano .. 1200

Vacuum Preloading with Drain to Drain Method for the New International Airport of Mexico City

Vito Nicola Ghionna, Prof., Luiz Guilherme de Mello, Prof., Valeriano Pastore, Managing Director, Roberto Andrighetto and Luca Pereira Cammarota ... 1210
Soil Mixing

A Deep Soil Mixing Application for a Road Slip Fast Repair
Massimo Grisolia, Ignazio P. Marzano, Giuseppe Iorio, Raffaele Papa and Giuseppe Panetta1222

A New Quantitative Approach in the Evaluation of Homogeneity in Deep Mixing
Diego Bellato, Ph.D., M.Sc., P.E., Paolo Fania, M.Sc., P.E. and Ulli Wiedenmann, Dipl.-Eng. (FH)1232

An Innovative Soil Mixing Treatment to Underpin Existing Buildings
Massimo Grisolia, Ignazio P. Marzano, Giuseppe Iorio, Raffaele Papa and Giuseppe Panetta1242

Applications of Cement Stabilization for Mitigating Earthquake Disaster
Masaki Kitazume, Prof. ..1251

Cutter Soil Mixing as Ground Improvement Technology in Under-Consolidated Clays
Sandro Gomes, Joao Nunes, Franz-Werner Gerressen and Thomas Vohs1261

Liquefaction Countermeasures Using Floating Grid-Form Soil Improvement for the Container Yard Located in Harbor Area
Shoichi Tsukuni, Takahiro Sugano, Takahiko Masumoto, Kazuhiro Kaneda and Yoshio Hirai1271

Strength Design of Cement-Treated Piles Subjected to Lateral Flow of Liquefied Ground
H. Takahashi, Head of Group, W. Tsuda, N. Takahashi, M. Fuchiyama, Y. Morikawa and I. Towhata1281

Testing and Evaluation of Residues as a Binder Component for Deep Mixing and Jet Grouting
Per Lindh Ph.D. and Håkan Eriksson Ph.D...1290

Unconfined Compression Tests of Cement-Treated Soil Containing Unmixed Soil
Tsutomu Namikawa Civil Engineering and Sae Suzuki ..1300

Project Information Management Systems (PIMS) and BIM

BIM - A UK Foundation Sub-Contractors Perspective
Mark Pennington Technical Director and Tracey Fitch Principal Technician1306

Data Management, Analysis, and Reporting for Small Foundations
Jamey Rosen and Andrew Higgins ..1316

Deep Foundation Job Sites of the Future: Digitization and Networking as Major Strategic Factors for Information Management Systems
Arno Halbeisen, MA, MA ...1325
Electronic Support in Installation of Special Foundation Products - Ensuring Safe Production and Increasing Quality Control

Franz-Werner Gerresen

Evaluation of Spatial Variability for Site Characterization Based on Standard Penetration Test Results

Salwa Yassin, MICE, CENG, Ph.D.

Mosul Dam - Building 2D & 3D Project Information Systems for Construction Monitoring and Risk Assessments

Vanessa C. Bateman, Baron M. Worsham, Laurel E. Blackman, Nathan D. Williams and Bobby S. Sells

Recent Advances in Bim in Geotechnics

Jim De Waele

PLEASE NOTE: This is out of page sequence
ANNULAR MONOBLOCK BRIDGE FOUNDATIONS

Alessandrini eng. Francesco, Alpe Progetti s.r.l. Società di Ingegneria – Udine – Italy
De Biaggio Nicola, I.Co.P. S.p.A – Basiliano (UD) – Italy
Fedrigo eng. Dario, Alpe Progetti s.r.l. Società di Ingegneria – Udine – Italy
Valusso eng. Diego, Alpe Progetti s.r.l. Società di Ingegneria – Udine – Italy

ABSTRACT

Annular monoblock foundations are increasingly used in bridge pillar construction, where they guarantee high bearing capacities, safety, speed and ease of execution.

Here we illustrate their main design and calculation features as well as the constructive modalities from some recent examples of Italian road bridges.

The advantage of this foundational typology is evident in the realization of high and medium span bridges in water, where the cost of construction is particularly optimized. The facilitation is significant since the construction operations are all from above and dry compared to the classic foundations of piles and pile cap that require the construction of provisional sheet pilings in water or other shafts, to allow the construction of the pile cap under the water level.

These last elements generally interact negatively on hydraulic behavior around the pillar; this interaction is considerably reduced with annular monoblock foundations.

keywords: bridge foundation, drilled pile, annular monoblock foundations

INTRODUCTION

In the construction of bridges on watercourses, the construction of pillars in the riverbed always poses the problem of defining the interaction between the body of the pillar and the fluid stream, a subject widely studied as purely hydraulic matter. There is also an interaction between the ground at the feet of the pillar and the stream, whose effects are reflected in the geotechnical and structural resistances of the pillar’s foundation.

The design and construction method of pillars with the annular monoblock foundation allows us to optimally address the aspects above, offering also significant constructive and economic benefits.

CLASSICAL FOUNDATIONS

The classical foundation construction typology of a pillar in a riverbed includes a reinforced concrete (RC) cap, headed on a series of piles, from which extrudes the pillar elevation. The use of deep pile foundations for this type of work is almost always necessary because, in the case of base erosion, it guarantees the maintenance of static and geotechnical functions. It is well known that the interaction between the motion of the fluid and the overall pillar can produce the phenomenon of "baring the roots", which is manifested first in the erosion of the soil in the area near the pillar shaft and, gradually, at the foundation level, once this interacts with the water flow. The size of this process can be very variable, and basically depends on the speed of water, the size of the immersed body, the shape of the pillar (according to Yarnell’s classic experimental approach, 1934, the shape can affect up to 40 % in the erosion process, and a circular shape is one of the least affected) and, finally, on soil characteristics.
In order to contain this phenomenon, which can remove the soil to a significant depth, it is frequently chosen to place the pile cap deeper than the bottom of the expected erosion: for this purpose, large excavations must be carried out. It is necessary to build temporary earth support structures and the construction workers will have to operate below the water level, even in deep wells.

ANNULAR MONOBLOCK FOUNDATION

The technological solution analyzed in this paper involves the realization of a single pile, coaxial to the pillar shaft, both with a circular section, and with a diameter suitable for supporting vertical and horizontal loads: for large bridges with spans over 20-30m, this can require foundations with a single pile diameter of more than 2m. By neglecting the cases in which the excavation of the pile can be realized directly with a single digging and casting operation (classic monolithic pile), the method illustrated is equally applied, regardless of the diameter of the final pile. The latter is made by means of a group of deeply intersected piles aligned along a circumference of appropriate diameter and coaxial to the shaft of the pillar. Thus, an annular section pile is obtained, which is achieved by joining each small diameter pile. From a hydraulic point of view this allows one to maintain the diameter of the elevation even at the base, reducing the effects of the interaction with the water flow thanks to the geometric external continuity. From a geotechnical point of view, the execution of a single pile, although large in diameter, avoids the formation of group effects and so the performance reduction concerning both horizontal and vertical loads.

CONSTRUCTION METHODOLOGY

The construction of this type of pile is articulated as follows:

- **Stage 1**: Creating the service area in the riverbed, protected from water and extraordinary flood events;
- **Stage 2**: Insert into the ground the circular self-founder caisson (more easily feasible for diameters not exceeding 3-4m), coaxial to the pillar shaft and the annular pile to be realized. The caissons are generally settled down into the soil a little beyond the level of the maximum allowable erosion so
that, in case of an extreme event, the water stream behaves as a smooth flow toward the precast concrete external shape;

Stage 3: Restore the terrain inside the caisson in order to maintain the service area almost at the ground level;

Stage 4: Primary and secondary intersected piles are executed up to the design level;

Stage 5: The top connecting element is realized, which solidifies the head of all the piles and forms the lower part of the shaft of the pillar;

Stage 6: The concrete of the upper part of the pillar shaft is cast.

![Foundation structure - detail of the top of the element at the end of stage 4](image)

During all stages, manufacturing is carried out on the ground level, without the creation of wells for staff intervention: this guarantees faster execution times and lower risks for people and machinery, especially in case of possible sudden floods.

IMPROVED ASPECTS IN THE HYDRAULIC-GEOTECHNICAL FIELD

The described construction methodology, besides the "classic" one, has some notable hydraulic and geotechnical advantages:

a. the shape and the transverse dimension of the pillar-pile assembly does not show any increments or variations, hence the hydraulic interaction between the water flow and the obstacle does not change when the depth of localized erosion changes;

b. there are no excavations or fillings in the prior natural soil of riverbed, except those strictly necessary for pile excavation; this maintains the level of surface protection close to the pile, the so-called "armoring", leaving the original soil in place, generally less affected by erosion;
c. the presence of self-founder caissons throughout the depth potentially subject to erosion preserve the cross-section, and ensure the protection of internal piles (with structural function) from external mechanical actions of water and debris;

d. the use of "average"-diameter piles allows one to reduce risks during the execution (the machines have less power requirements), especially in dense soil with possible presence of boulders.

IMPROVED ASPECTS IN THE STATIC-CONSTRUCTION FIELD

From a static and construction point of view there are several advantages:

a. the presence of the self-founder caissons causes the "annular pile" to be secured (armored) by a high-strength and durable element inserted without causing significant disturbance to the surrounding soil;

b. the use of self-founder caissons serve as a template for the execution of the following piles, thereby giving a greater guarantee of the final geometry;

c. the use of many small diameter piles allows an easier control of the execution, which can be monitored through non-destructive techniques (S.I.T., Sonic Integrity Test, e.g.), optimized with lower casted volume elements;

d. it avoids the construction of a connection element (pile cap) between the head of the piles and the elevation, thereby saving on the quantity of material;

e. the strong intersection between the piles allows for a monolithic behavior of the system, utilizing the adhesion between the non-negligible concrete surfaces that are placed in contact;

f. the operations are all done from ground level; this allows for a greater yield-per-hour and thus shorter working times;

g. there are no significant excavations in the riverbed (except for the self-founder caissons), which is often a problematic operation due to the lack of free areas for temporary soil storage and subsequent reuse.

EVALUATION OF THE EFFECTIVENESS OF THE INTERSECTION BETWEEN PILES

Intersection between piles, even though it involves higher execution costs than a “side by side” arrangement (the greater number of elements to be constructed creates greater potential costs for the used tools and longer time required for execution), it allows one to obtain a monolithic, almost annular cross-sectional structure. The monolithic structure allows a behavior in which the local compression peaks acting on the individual elements are damped.

Detailed analysis highlights how this function can be obtained utilizing the only shear and adhesion resistance that develops between two concrete surfaces cast in successive phases. Also considering that all the piles are connected to the top by a monolithic casting of concrete and from the following shaft of the pillar, the foundation structure can be considered as a single monolithic element consisting of a ring of reinforced concrete inserted into the ground. Calculation of the load bearing capacity is generally performed by considering lateral friction resistance on the overall outer surface to which the bottom resistance is added assuming the contact surface equal to the overall annular section of the monoblock.

Alternatively, the external lateral resistance mentioned above may be considered together with a bottom resistance calculated from the whole base section (circular section with outer annular ring diameter) reduced by a “scale effect” assessed from Meyerhof’s (1983) or Alessandrini’s et al. (1988, 2015) considerations.
Calculation of horizontal loads (shear and bending moment from pillar) can also be carried out using simple 2D software (e.g. based on the “bed constant method”, using a simplified pile-ground interaction through a double wall of nonlinear Winkler’s springs). This analyzes the pile behavior under horizontal loads, without necessarily resorting to more sophisticated 2D or 3D FEM software, whose results have proven to be very close to the first.

Fig. 3. Annular monoblock calculation scheme using 2D software based on the SRM (Subgrade Reaction Method)

CASE HISTORY

The annular monoblock foundation technology has been used in recent years for the realization of various bridges, including the new one over the river Torre, between the municipalities of Chiopriss-Viscone and Palmanova, near Udine, Italy.

The bridge has a total length of 665 m, divided into 15 spans with a typical length of 47.5 m, allowing the river to be crossed alongside the existing bridge (demolished at the end of the work).

The bridge deck is made of a framework steel structure with overall height of 3.5m, at supports, and 2.8m, at the midpoint of the spans.

Each pillar is made up of a single cylindrical element with an outer diameter of 3.25m, which at the top of the frame extends in a transverse direction up to 7m, to allow the positioning of the support devices.

The foundation structure of the pillars consists of the annular monoblock made by 12 intersected drilled piles, with a diameter of 0.75m, nearly 30m long, carried out at constant pitch along a circumference with a radius of 0.99m: thus, the intersection of primary and secondary piles is 23.5cm.

The overall concrete section has a theoretical surface of 4.22m², with outer circumference of 8.23m (or a diameter of 2.62m).

The pile is inserted in a soil with good geotechnical characteristics. Low-density alluvial deposits near the surface form the hydraulic movable base of the riverbed. Progressively the coarse gravels become thicker with weak sandy filler. At about 25m depth, a stronger layer can be found, consisting of banks of conglomerates, in which the tip of the piles is based.
The realized annular monoblock has a calculated capacity at vertical loads of about 25,000 kN in compression and about 15,000 kN in tension. The breaking bending moment, with only 6 reinforced piles out of 12 constituting the annular section, has a value of about 28,000 kNm. The shear strength, estimated as the sum of individual reinforced piles strength, is approximately 2,800 kN.
Fig. 6. Vertical section of the whole structure with highlighted annular monoblock foundation and the well with self-founder precast caissons. Above, the foundation section with linings and, below, the same made only by piles

Construction stages are shown in Fig. 7:

1. inserting self-founder caisson;
2. filling the caisson;
3. execution of primary piles;
4. execution of RC secondary piles;
5. provisional protection element removal;
6. circular monolithic pillar construction
CONSTRUCTION COSTS

The foundation typology illustrated, as well as having undoubted constructive advantages, is also cheaper than a classical foundation made up of a deep cap on piles. In the illustrated case, for example, the tender project expected a foundation of this type, then modified in the annular monoblock (during the tender procedure as a technical and economic proposal). For the entire foundational structure, the annular monoblock solution has shown a construction cost about 25% lower than the tender solution with caps on piles.

Furthermore, the construction is faster than the traditional one. In the case shown the expected time to build up an annular monoblock foundation is reduced to about 33% compared to the initial solution.

CONCLUSIONS

This article illustrates the constructive method of the annular monoblocks which allows one to obtain significant technical and economic benefits in the realization of bridge pillar foundations on riverbeds.

The technology is capable of being implemented independently of the pile shaft size, and it is easy to apply in those hard soils where the realization of individual piles is still difficult.

The recent application example presented showed the advantages of the methodology, which can offer rapidity of construction, adequate structural and geotechnical strength and overall economic advantages.

Depending on the specific foundation requirement, the structure can be optimized with particular regard to the pile intersection degrees, and the global bearing capacity assessment.
REFERENCES

- Brath A., 2006. La sicurezza idraulica degli attraversamenti fluviali (The hydraulic safety of river crossings), Bologna University
- Icop, Omba, Alstudio, Alpe progetti, Sist, 2017. Progetto esecutivo della riqualificazione S.P. 50 – Ponte sul Torre – nell’ambito del collegamento stradale veloc fra l’Autostrada A4 (Casello di Palmanova) e l’Area del Triangolo della Sedia in comune di Manzano (Final rehabilitation project of S.P. 50 - Bridge over the Torre River - Fast speed road connection between the A4 motorway (Palmanova exit) and the area of “Triangle of the Chair”, Manzano municipality) – Autovie Venete – Udine