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1. Introduction.

Wherdag 1% is rather obvious that the problem of stability and
post yield behaviour of a structure can be treated properly only
within framework of the gegmetrically non-linear theory, the
question arises, whether the second order effects, usually negle-
cted when formilating the constitutive'relatioﬂs, play also sub-
stantial role.

Therefore, such effects as influence of various definitions
of perfectly plastic material /associated with the different ob-
Jective stress rates/ on the post yield behaviour of the shells -
1s considered in the paper, The material incompressibility, ob-
served when plastic deformations take place, is also taken into

- account when formulating geometrical relations, The results are
compared with the known solutions obtained under the assumption of
constant shell thickness.

The problem eonsidered 1s illustrated by examples of cylin-
drical shells subject to the end axial forces and uniformly dis-
tributed lateral dead load.- =

2, Material stability and the definition of perfectly plastic .

material . {
In the recent literature the following two approaches to
the definition of the material étability_of time~-independent ma-
terials are most commonly used,
: The first one is concerned with Drucker®s concept [1] .
The material stability condition is then derived from the energy
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.eriterion of stability of a body or a system when homogenec;us
stress and strain states are assumed.
The other approach consists of - generalization of the defi-

-nition ‘of material stability under one-dimensiomal tensiom to

cover an arbitrary stress state. According to this definition the
material is said to be stable when the stress-strain curve ‘is
rising and is said unstable when the curve is falling. This idea
can be generalized for the }—-d:imenslonal stress stete and expressed
analytically as a requirement that the scalar product of conju-
gate stress raté and strain rate tensors be non-negative for stable

material

éijd;j} 0 : . iy

v

where - § denotes an objective time derivative of the Cauchy

/true/ stress temsor and olij is the symmetric part of velocity

gradient. 3t -' :

This definition dees mot, however, describe the material pro-

" perties in a unique way since the material stability depemds here
upon the choice of the abjective stmss rate measure.

In the litemture, the Jaumann stress derivative /denoted
here by 6 ./ is usually chosen to be used in the constitutive
relatmns. The Jaumann stress: rate is assoclated with axes rota=-
- ting with a material element but not deforming with it. The rela-
tion /2.1/ can then be rewritten in the form

69 di;>0 9 2.2/

and is called material stabil ity condition in the Jaumari\rn sense
[2] . -Using, however, the Oldroyd stress derivative 6 Jas~-
sociated with the axes rotating and defomjng with the material
element/ the relation /2.1/ takes the form

'6'0"3 d ;>0 : [2.3/

and is called mater:.al ‘stability condition in the Oldroyd sense
peils, :

Malking use of the known Telatien between the Jaumann and
the Oldroyd stress derivatives
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T, Li-'-j‘ kit

6= 64 +6d]+ 64d} | B,
the material stability condition /2.2/ can be transformed to be-
come A ;

ggi’j d.;,j *'2 Si’j ,U,ni ’i?‘..,,d}() i 12.5/. -

The theory of finite deformation of plastic shells is usually for-
mulated in the total Langrangisn description. Then, the constitu-
tive relations are required to be established ‘using variables of
“this desoription, that is%imhhoff_stress tensor 5 and the
Green strain tensor [ 5 R it may be shown that the following
relation: takes place [ 2]

9, " . . y :
@ u d-'bj __.'% 5 k"‘E'm_ /2.6/

where 5»' and 9‘, are the instantaneous and the initial mass
densities. AL ;

Substituting /2.6/ into /2.3/ we obtain material stability
condition in the Oldroyd sense in the form

o  9TEg20 . ey
Similerly, in ¥iw ot tne relation '
iy - it e e : j
Sid =5 E #ZH Tk Ok i S f2Bf

the material stability condition in the Jaumenn sense may be writ-
ten as : ; = :

SK‘E,“_*ZSKLEKME':}O i -/2.9/

Since the perfectly plastic material 1s dei‘iﬁed as a plastic
‘solid for which the neutral material stability condition is satis-
fied, in view of above considerations, the following definitions

of the perfectly plastic material can be introduced.
We say that material is perfectly plastic in the Jaumann
gense if i ' i




g?’&j d- Pl B . : f2.1Q/,\.

o

.°5 H'éﬂ_ + SVKL'IEK,,. E:_‘:O : j J2.91/

Similarly, we say that material is perfectly plastic in the Old-’
‘royd sense if : 3 -

Yo.. : :
6“dy=0 : [2.42/

~ KL e Z .
5 Eu” 0 ' ' /2.13/
if the Lagrangian description is applied.-

Z. Geometrical stability.

A guestion of geometrical stability depends on the material
stability, boundary conditions and the geometry of the body.

The geometrical instability problem arises when the instabi- -
lity associated with changes in geometry is great emough to over-
come the stability of the material.

The criterion for geometrical stability may be formulated in
terms of the dead load intensity rate[3] ; so let us consider
a structure subject to a system of dead loads P  of monotoni-

cally increasing intensity

Pix.Ch= A(U?Q{) i <)

= ;
where AL (t) indicates the load intensity and B(x) specifies
the load distribution.

The rate of losding is therefore

1D

PIX.£)= m(t) P(X), s
R 3
Geometrical stability is associated with 4L >0 , and this
means that a guasistatic motion of a_structure takes place only
for increasing dead loads; if AL <0  the structure is sald to
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" be geometrically uns’:ta-blg and it means that a structure continues:

to deform plasticity also if decreaszing dead loads sre applied.
Making use of the Primciple of Wirtual Energy end the non-li-

. mear strain-displacement relaticn the following expressian can be
‘derived for the stress. rates [4}

jF’ Ued$ = I(S“E,‘Lr SELU_P,.,,CU ,L)eiV 3.3/

where i is a ciisplac.ement vector; vertical stroke denotes co-
variant differentiations S and V  are the surface and the
volume ‘of the body respectively in the original configuration.

Substituting /35.2/ into /3.3/, the rate of load intensity
way be determined firom the formuila

L5 B Sy W]V
Jt,“ Sfﬁgukfjs W 3.4/

For positive AL(E)  the failcming inequality is always satisfled
Sff':‘“fl,{ ds 20 . 3.5/
From /3.4/ amd 3.5/ it follows that AL}O  if 7
vf(ﬁmém.*-sﬂuni'_‘ [LF:L)"W}O'- '/3-5/.

Therefore, the relatien /3.6/ can be considered as the geometrical
stability condition.

For the rlgid-perfectly plastic material in the Oldroyd sense,
in view of /2,13/ the geometrical stability criterion /3 .6/ redu=

‘ces to

'Vf * ﬂM-IKU-’:r. dv >0, S e

" whereas for rigid-perfectly plastic material in the Jaumann sense,

in view of /2.,11/ it becomes

_vf gkt [.lgm' U.",,__dV | /5.8/
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4, Application of the geometrical stability conditions to cylindri-'
cal shells.
Let us consider a thin-walled, cylindrical shell subject 't.o
a rotationally symmetric deformation under action of uniformly
distributed dead load P ‘and the axial end load T , Fig. 1.

%Mlxlxiiltlr "
. , ,

= 2 . - o

’%IHH;ITLH%'

Fig. 1.
Assuming that the components of the displacement vector uw*

are analytic functions of the coordinate z normal to the shell
middle surface, they can be expanded into a power series -

TWZE0 i
Bl sy s
S L0 22T

In view of the assumption that the considered shells are thin,
the non-linear terms with respect to Z can be neglected.

& =l
/] n L

From the assump‘tion of rotationally symmetric deformation it
£ollows that the circumferential component % of the displace-
ment vector is egqual zero. 2

Next, we assume that the transverse shearing is negligibly
emall and that no volume changes take place during plastic defor-
mations. These -assumptions allow us to express the functions i
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and T" in terms of W. ama V.
Finally, the displacement field is i‘ind to has the form

A_u==w-zrv,,,,+'-‘;’—)

ofT A W _ - _/4.2/.

W'-0.

This means that the straight normals to the middle surface
remain straight but the normality is satisfied only for Z= =0,

moreover their lenghh /thiclmess of shells/ can change during
the dei‘or'matj.crn process. -

The above kinematic assumptions are less restrictive than
‘the assumptions of the classical Kimhhoff-Love theory of shells
which say that the stra:l.ght normals remain straight and normal
and 4o mot change their lemgth, The displacement field has then

the form:
W= W

= V— Z erx . la.3/
a
=0
Making use of /2.13/ and */4.2/ in /3.4/ the expression de-

\.'Eining the rate of load intensity for perfectly plastic material
in the Oldroyd sense may now be written as:

Sf{ﬂel;rl+nx[r Ju-z+1r] d‘-[-:rn :x‘?n”ax*v ]
- sf(pw‘ntq)i.ni)ds

Jhl/
L e (24, )] ) dS

where the dimentionless quantities are defined as follows

' W : ANk X L..
CLBaR N oSG e e T Ju.5/
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. . M .- "_1_ +H b _*‘_.P ; i 3
ah"‘éd"(;o_n_{ S: dZ, "ﬂ-g’Z&’oﬁ-‘!Sa d,Z_ , P Gnﬂfi!sifd_z /4.6/

7/

B S 2 AR e
P= 26,0  EWE, M - :
Assuming the "limited. interaction” yield conditlon, the 1i-

mit load solution for the eylindrical shell. with the boundary con=

ditions considered in the paper Was obtained by P:G. Hodge {5y 0

The curve ABCDEF in Fig. 2 shows the yield-point loading .
curve for the particular case of oC= oo and the curve
PBCDEF for &£=2 . ]

The yield-point loading curves for 2 <ol< co  have the
similar shape and are placed between the curves for k=2 and -
ot = &0 . In Fig. 2 -are marked also the curves for oC=2 and

o= b
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Fig. 2
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Now, meking use of stress and velocity flelds given by limit

' 1oad solution we shall supplement this solution by information |
about gtability and the slope of the load-deflection curve at the
yield-polnt load. : '

- For the range of loads re_presented by Meline CDor . C*D? in
Fig, 2, the limit load solution [5] glves.

Bera etk e
in o2, Mgt cdrd imett, e

= i . : i A L) L a
s {x) =g (x-7) ;

An this case _expréséidn.'ﬂt;h/ becomes:

gwo (3t P2t 1-—-) e

o ":
?Iénce ni :
,u, >D . ¥or t> —%-1—5— shell is stable , /4.10/
: 3ﬁ+2m’-'
/1:1,‘{0 for £ < _%c*_s shell is uﬁstable . b/
: : 3g +2K ;

For the range of loads represented by f#he line BC or B*C’ in
Fig. 2 the limit load solution [5] ' gives: i

-i<t O pidr &
4. ZX > 'n 3'1 ’n,"r‘t ’ Jh.12/
_1;,‘ = ﬁg [i'X)'-: 1}’:0 .
-'J:hgr _lo_é.d inte_nsi'.ty‘ /h.lr/ reduces to the form

; 2(:%1‘,(3{:5! 'j. "3')
o 3(nc+2)

[4.3/

e —————————————————————— T —————————
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Since numerator is always negative and denominator is always
positive we have

DS e ' s/

hence the shell is unstable for any T  from the rangci 5 4.0} .
For the range of loads represented by the line A.‘El"'in Fig, 2,
limit load solution [5] . gilvess

| T :
m= k(4-2x%) .m,-1 8 Ryxrpe—=. /ha5]
w=0 ., ’f"=r'f7’,,:(‘_

where ~1 £ k£ 1 .
The load 1rrbensity ‘calculated from /h..h/ gives:

A).?"’U,’,(U ' 16/

and therefore the shell is unstable.
Analogous calculations can be performed for negative va'l.ues
of the load p . i !
The stability, in the case }CGHSMEI‘E& depends on the ratio
-of the surface tractions as well as on the geometry of the shell
described by the ratio % and the parameter o ., The -
vield-point loading curves can be divided, by the lines H=H'
and k=-K° , into two part:s{Fig. 2). One of them /denoted by ‘the
signs @ / corresponds to a stable and the other /denoted by the
sign - © / to an unstable limit ‘state solutions. The results pre- .
sented on Fig. 2, are calculated for L/A“ i 2 oo - \
Let us now compare the results obtained abcnre at the assump-
tion of incompressibility, with those presented in the paper [6]]
calculated for the same example of the shell but vhder the assumption
of constant shell thickness and the displacemert field in the form
/4.3/. Fig. 3 shows the comparison of results for L/A"—' i 2 a2 -
The results preoen'beﬂ show that such fenomena as material
incompressib:.lity may play important role when stability of plastic
shell, is considered. The differences are grater for thicker shells
/ o€ small/ s Wwhereas, the both solutions coincide for infinitely
thin shells /[ eC= ©2 /, The lined zone in Fig. %4 indicates the

-
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i |
ratio of the loads p/# for which the answer whether the

shell at the yield point load is stable or unstable, chafiges iffthe
incompressibility condition is-taken into account. ‘
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We now proceed to investigate the stability problem for the
same example of cylindrical shell as considered above but made of
rigid perfectly plastic material in the Jaumann sense. Making use
of /2.11/ in /3.4/ the expression defining the rate of load in=
tensity for perfectly plastic material in the Jaumann sense may

be written as




e o

-fs'fLuk,,;,(L" dv
fP U. d5

Next, analogoualy as before, :Eor the displacement field
[4.2/ apd the dimensionless quantities /4.5/ - /[4.7/, the equs-
tion /4,17/ can be rewritten in the form

lEa7]

/[ My 'U‘;,( ‘L"" ‘U':x) 2 ,m'(w .ﬁn*!&!i‘zq}:tﬁn’)-
Tl 5 BT

= filg '&:}'2 1':: 'm,(,x 1.:"”( 'w'] 0!,5

Substituting the T it Toad solirtion /b.8/ for 0&E<1,
into /4 18/ we obtain

.‘ T 2 |
Al Zw,nc(?.ut?‘Zt_"’i‘st) ] Jb.18/
i 3(ec+2)

Hence, the she‘l;l is stable, 4+ 3D
9- : Z 2
tor £ X o(.(i“l 7 if '%z< "

2 S
Whereas the shell is uns‘ta'ble, AL <O

- A 2
for t) 2) e 2 < o
Similarly, st_fbstitu‘tion of [/4.,12/ into /[4.18/ leads for
= 4Lt £ 0 to

Ay 2
and for any ¥ 1o --}-3—

i 25, & (3t 45+ 4+ &)

= g(OC*Z) : [h.20/

hence, the shell is stable




et

=3 =2
A0 Lo ofap ? 6ol Ez g e/
and the shall is unstable , 3 :
: : e
A &0 gor ok <W < haz2f
‘ Finally, for t=~1  , substitution of /4.15/ into
/4.18/ furnish = . ; r ; '
L=, )0 - - 23]

what indicates that the shell is stable. Foregoing results, for
the cylindrical shells made of incompressible, ‘perfectly plastic

material in the Jaumsnn Sense are preserted in Fig. 5 for el=2,

ly=4 and in Fig. 6 for a=3500 , La=2.

COMSTANT THICKNESS
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For the same definltion of perfectly plastic material (in
the Jaumann sense) but for the displacement field /4.3/ /at the
Kinghoff-Love assumption of constant thickness/, the stability
problem a‘t the yield point load has the following solution:

Por D&+ €45
.;2%&(3#4 2t+1-%)
A 5(i+2) A-y [b.24)

for -1<t<0:z
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Apstract

The paper deals with the problem of stab:lity of r.lgiﬁ-
perfectly plastic shells at the yield no:Lnt 1oad. : : ;

‘The materlal incompressibﬂ.ity cbserved when plas’l:ic Ges
formations. take place, is taken into account and the res‘ults are
compared with the known solution abtaj_ned when the thickness of
the shell is assumed ‘to be constant.

The infiuence of different definitions of perfecﬂy pl&stic
material on the post yield. behaviour of t_he she]:l._s is alsq cr_m- 5
sidered.

The question is illustrated by the examples . af‘ cylimlrical
shells subject to axial end forces and uniformly distrjhgtad Lo
teral dead load. :







