














468 M. K. DUSZEK AND F. ALESSANDRINT

Making use of Egs. (2.13) and (4.2) in Eq. (3.4) the expression defining the rate of load
intensity for a perfectly plastic material in the Oldroyd sense may now be written as
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where the dimensionless quantities are defined as follows:
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Assuming the “limited interaction” yield condition, the limit solution for the cylindrical
shell with the boundary conditions considered in the paper was obtained by P. G. HODGE
[5].

The curve ABCDEF in Fig. 2 shows the yicld-point loading curve for the particular
case of @ = oo and the curve A'B'C’'D'E'F’ for o0 = 2.

The yield-point loading curves for 2 < o < oo have a similar shape and are placed
between the curves for « = 2 and « = o0, In Fig. 2 are marked also the curves for o« = 3
and & = 5.

Now, making use of the stress and velocity fields given by the limit load solution,
we shall supplement this solution by informing about stability and the slope of the load-
deflection curve at the yield-point load.

For the range of loads represented by the line CD or C'D’ in Fig. 2, the limit load
solution [5] gives

0<r<1, p=1—t+%,

(4.8) ' my = 1—2x2, mp= —1+t, ny=1t,

x2
w=w(l—x), o= (x—T);

in this case the expression (4.4) becomes

0% A? §
?cxwo (3?L2+2t— 1 ﬁ?)
















